SEESGEN-ICT
An Introduction to WP2

SEESGEN-ICT General Meeting
Paris - 14th April 2011
Parvathy Chittur Ramaswamy
WP2 Team

- K.U.Leuven: University of Leuven
 - Belgium
- BTH: Blekinge Institute of Technology
 - Sweden
- AIT: Austrian Institute of Technology
 - Austria
- CU: Centre for Integrated Renewable Energy Generation and Supply of Cardiff University
 - United Kingdom
- ECPE: European Center for Power Electronics e-V
 - Germany
- UL: University of Lodz
 - Poland
- ENEL DIST: ENEL Distribuzione S.p.A.
 - Italy
- PPC: Public Power Corporation S.A.
 - Greece
- + seesgen-ict consortium at large
WP 2 - context

- ICT is not much used (yet) for operational management of distribution grid
 - only limited monitoring is available
 - few control elements in distribution grid

- (how) can ICT improve grid management in order to reach better energy efficiency?
 - ICT is not a panacea for smart grids
 - only better view on global state and means for control

- intra grid management
 - (link to WP3 monitoring and WP4 endusers)
Scope: intra-grid management

- specific focus of work
 - to *smart* applications
 - not possible/used in current grids
 - that *manage* the grid
 - not end user, not monitoring
 - at *distribution* level, focused on technical aspects
 - not business, not customer relations…
 - that really require *ICT*
 - not purely local, not purely electrical
 - that *improve energy efficiency*
 - save energy, use energy better
Three intra-grid management applications

- based on 3 representative specific applications

 - voltage control
 - not purely electrical, but where ICT provides specific opportunities

 - adaptive protection
 - if it is distributed and based on ICT solutions

 - distribution grid reconfiguration
 - proactively and reactively
Voltage Control

- Keeping voltage within specified limits
- Entities involved

Controller

OLTC

chosen points in the distribution grid

DGs
Adaptive Protection

- A protection philosophy

- Altering the settings of protective devices to best suit the prevailing conditions
 - Preventive and emergency control
 - Positions the system to be robust
 - Responds to failure events - modifying protection system
 - Identifies developing emergency - responds to diminish its impact
Adaptive Protection Contd...

- Entities involved

 - Sensors
 - Breaker & actuating circuitry
 - Substation Coordination Controller
 - Lines and busbar at the substation
Grid Reconfiguration

- minimizes the power losses
 - normal operating conditions

- prevent the whole or part of the system
 - from going into unsafe conditions - under abnormal operating conditions

- grid reconfiguration – proactively and reactively

- Implemented with the help of ICT
 - ICT to open and close various switches
Grid Reconfiguration Contd...

Entities involved

- Relays
- Breaker & actuating circuitry/ relays
- Controllable loads and Distributed generators
- Switches
Contribution by WP2 – in terms of deliverables & publications

<table>
<thead>
<tr>
<th>Deliverable No</th>
<th>Deliverable name</th>
<th>Dissemination level</th>
<th>Delivery date (project month) as per SA</th>
<th>Actual Delivery date (project month)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D2-1</td>
<td>Detailed Workplan (SA) of WP2</td>
<td>Restricted</td>
<td>Month 3</td>
<td>Month 4 (Oct 2009)</td>
</tr>
<tr>
<td>D2-2</td>
<td>Report on ICT requirements, offers and needs for managing Smart Grids with DER</td>
<td>Public</td>
<td>Month 8</td>
<td>Month 8 (Feb 2010)</td>
</tr>
<tr>
<td>D2-3</td>
<td>Report on Technical and non-Technical Barriers and Solutions for managing Smart</td>
<td>Public</td>
<td>Month 12</td>
<td>Month 13 (July 2010)</td>
</tr>
<tr>
<td></td>
<td>Grids with DER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D2-4</td>
<td>Policy actions and recommendations for intra-grid control applications in smart</td>
<td>Restricted</td>
<td>Month 18</td>
<td>Month 19 (January 2011)</td>
</tr>
<tr>
<td></td>
<td>grids</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Publications:

2. P. Chittur Ramaswamy, G. Deconinck, “Relevance of Voltage Control, Grid Reconfiguration and Adaptive Protection in Smart Grids and Genetic Algorithm as an Optimization Tool in Achieving their Control Objectives”, *IEEE ICNSC 2011, Apr 11 to 13, 2011, Delft*

Thank you!